
Czech Technical University
Faculty of Informatics
Department of Theoretical Informatics

BI-PPA 2017 Cvi od do Lispu Date: 3. 11. 2017

What will we cover Basic constructs in Lisp (CLisp), function definitions, working with lists.

Lisp Basic Syntax Prefix, case insensitive insensitive language with lots of parentheses and ap-
plicative evaluation.
Basic building blocks are called atoms: atoms are numbers, characters (letters and other characters
such as *, +, -, #) and strings.

symbols: A,B,C,..., Z ; characters
0, 1, 2, ..., −1 ; integers
1.0, 0.5, 3.14 ... ; real numbers, must contain the decimal dot!
1/2, 5/6, ... ; fractions (will be converted to normal form)

strings: "Hello", "+Hello’", ...

arithmetics: +,−,*,/, ...

logic: not, or, and

predicates: =, <,>, equal, equalp, eq, eql, numberp, atom, zerop, listp, evenp, oddp. . .

special symbols: T – true, NIL – false, ne, empty.
quote, ’ – takes the expression after ’ without evaluating it, e.g. ’(+ 2 3) returns (+ 2 3)
and not 5.

conditions: (if (condition) a b)

functions: (defun name (arguments) body)

comments: ; single line
#| multi-line, delimited with |# (or in some versions using #||, ||#)

clisp: Basic interpreter commands:

start: clisp

exit: (bye), (quit) nebo (exit) . . . all commands in clisp must be surrounded by parentheses.

evaluation: expression in parentheses, then enter.
e.g. (+ 2 3), Enter, → 5

loading file: (load "file.lisp") . . . correct loading will be denoted by the following lines::
Loading file file.lisp

Loaded file file.lisp

T

help: :h to get the available commands

errors and typos: :e . . . prints the text of last error

:r3 or :R3 . . . return to interpreter’s main loop.

1

Ex. 1. Exercise in writing expressions: Rewrite the following expressions to be valid in clipst (i.e.
change to prefix, fix parenthes and let clisp evaluate them.

a) (5− 3 ∗ (2 + 3))/(5 + 8/2− 3) Solution: (/(−5(∗3(+23)))(−(+5(/82))3)) → −5/3

b) (3 ∗ 3 + 5 ∗ 5− 6/2) Solution: (−(+(∗33)(∗55))(/62)) → 31

c) (10/2 + 3/3− 5)/(18 ∗ (8/2− 3)) Solution: (/(−(+(/102)(/33))5)(∗18(−3(/82)))) → −1/18

Ex. 2. Write the definitions of the following simple functions (you are only allowed to use equalp, if,
+1, −1, <,>, true, false, symbols and integers): Solution: solution can be found in separate file
1.lisp

a) addition of x and y,

b) subtraction of x and y,

c) multiplication of x and y,

d) division of x and y,

e) modulo of x and y,

f) square of x (returns x ∗ x),

g) square root of x and y, (version II: as binary squaring)

h) maximum of x and y,

i) function which decides if first of two numbers is greater,

j) function which determines if x divides y,

k) factorial of n,

l) n-th fibonaci number, (version II: in linear time, version III: sub-linear time)

Solution: solution is in separate file 1-solution.lisp

Ex. 3. What will be the result of the following tuples and predicates eq, eql, equal, equalp.
What is the difference between them?

a) 1 1 Solution: always returns T for all predicates

b) 1 1.0 Solution: always NIL, but for equalp

c) 1 4/4 Solution: always T

d) 1 (/ 4 4) Solution: always T

e) 5 (+ 2 3) Solution: always T

f) ’a ’A Solution: always T

g) ’ahoj ’Ahoj Solution: always T

h) 1.0 1.0 Solution: always T

i) ’(2 3) ’(2 3) Solution: eq, eql returns NIL, equal, equalp returns T

j) () () Solution: returns always T, for all predicates

2

Lisp basic structures - lists: Lists are basic data structure in Lisp. Their access is sequential, so
specific access patterns are required.

Functions to work with lists: cons, car, cdr, list, append, atom...

pady seznam
(), nil ; empty list
(1 2 3) ; list of integerl 1, 2, 3
("foo" "bar") ; list of strings
(x y z) ; list of symbols x, y, z
(x 1 "foo") ; list of symbol, integer and string
(+ (* 2 3) 4) ; list of symbol, list (containing symbol, integer and integer) and integer.

Ex. 4. Wtite three different cons expressions that return (a b c). Solution: (cons a (cons b (cons
c nil)))
(cons a (cons b (cons c ())))
(cons a (cons b ’(c))))
(cons a ’(b c))

Ex. 5. Draw the represetation of the following symbolic expressions in memory:

a) (A B (C D) E)

b) (A (B (C (D . E))))

c) (A (B . C) (D . E))

d) (A B (C . (D E)))

Ex. 6. Using car and cdr define function fourth, which returns fourth element in a list.
(fourth ’(1 3 8 6 5)) → 6 Solution: C-Lisp: (defun fourth (lst) (car (cdr (cdr (cdr lst)))))

Solution: Solution to all following exercises can be found in the file 1-solution.lisp

Ex. 7. Define function contains, which determines if given element is contained in a list.

• (contains 6 ’(1 2 3 4 5)) → nil

• (contains 6 ’(1 2 (8 3 6) 4 5)) → nil

Ex. 8. Define function listLength, which calculates length of a list.
(length ’(1 2 (3 4))) → 3 Solution: C-Lisp:
(defun length (lst)
(if (eq lst ())
0
(+ 1 (length (cdr lst)))))

Ex. 9. Define function middleItem, which returns the middle item in a list (excluding sublists), and
do so without using the length of a list.
(middleItem ’(1 2 3 4 5 6)) → 3 (middleLitem ’(1 2 (3 4) 5 6)) → (3 4)

Solution: C-Lisp:

3

(defun middleItem (lst)
(middleItem2 (cons () lst) lst)) ;we need to be one step behind, so put an empty list at the beginning
of l so that we get correct result in case of l = nil
(defun middleItem2 (lst sez)
(if (equalp sez ())
(car lst)
(midleItem2 (cdr lst) (cdr (cdr sez)))))

Ex. 10. Define function pushback, which adds second list after the first one.
(pushback ’(1 2) ’(5 6))→ (1 2 5 6) Solution: C-Lisp:
(defun pushback
(list-1 list-2)
(if (eq list-1 ()) list-2
(cons (car list-1) (pushback (cdr list-1) list-2))))

Ex. 11. Define function max, which returns the largest element in a list.
max ’(6 8 1 3 9 2) → 9 Solution: C-Lisp:
(defun max (list)
(if (equal list ())
()
(maxx (car list) (cdr list))))
(defun maxx (m list)
(if (eq list ())
m
(if (¡ m (car list))
(maxx (car list) (cdr list))
(maxx m (cdr list)))))

Ex. 12. Define function atomy, which calculates the number of atoms in an expression.

• (atomy ’(1 2 (3 4))) → 4

• (atomy 1) → 1

• (atomy ’(1 2 (3 4 . 5) 6 . 7)) → 7

Solution: C-Lisp: (defun atomy (arg)
(cond ((null arg) 0)
((atom arg) 1)
((eq 1 1) (+ (atomy (car arg)) (atomy (cdr arg)))))) ; else

Ex. 13. Define function revlist, which reverse the order of elements in list without changing the
sublists. Solve also using tail recursion.
(revlist ’(1 2 3 (4 5))) → ((4 5) 3 2 1) Solution:

Ex. 14. Define function genList, which accepts integer x and number of repetitions n. The result is
a list of n numbers, from x to x + n− 1.
(genList 12 5) → (12 13 14 15 16) Solution: C-Lisp:
(defun genList (x n)
(if (eq n 0)
’()

4

(cons x (genList (+ x 1) (- n 1)))))

Ex. 15. Define function srlist, which calculates a list of square roots of a list. Negative numbers
will be ignored.
(srlist ’(11 -5 4 8 -7)) → (3.3166247903554 2.0 2.8284271247461903) Solution: (de-
fun srList (lst)
(cond ((eq lst ()) ’())
((¿= x 0) (cons (sqrt x) (srList (cdr lst))))
((¡ x 0) (srList (cdr lst)))))

Ex. 16. Define function avgList, which takes two lists, the result is list of their averages by elements.
In case the length of the lists differ, extra values from the longer will be used unchanged.
(avgList ’(1 2 3 4) ’(7 8 9 10)) → (4 5 6 7) Solution: C-Lisp:
(defun avgList (x y)
(cond ((and (null x) (null y)) ’())
((null x) y)
((null y) x)
((eq 1 1) (cons (/ (+ (car x) (car y)) 2)
(avgList (cdr x) (cdr y))))))

Ex. 17. Define function revAll, that reverses all elements including sublists. Do not consider lists
not finished with nil.
(revAll ’(1 (4 5 6) 3 (1 2 3))) → ((3 2 1) 3 (6 5 4) 1) Solution:

5

