
A Fast Abstract Syntax Tree Interpreter for R

Tomas Kalibera †Petr Maj ‡Floreal Morandat Jan Vitek
Purdue University †ReactorLabs ‡University of Bordeaux

Abstract

Dynamic languages have been gaining popularity to the
point that their performance is starting to matter. The effort
required to develop a production-quality, high-performance
runtime is, however, staggering and the expertise required to
do so is often out of reach of the community maintaining a
particular language. Many domain specific languages remain
stuck with naive implementations, as they are easy to write
and simple to maintain for domain scientists. In this paper,
we try to see how far one can push a naive implementa-
tion while remaining portable and not requiring expertise in
compilers and runtime systems. We choose the R language,
a dynamic language used in statistics, as the target of our
experiment and adopt the simplest possible implementation
strategy, one based on evaluation of abstract syntax trees.
We build our interpreter on top of a Java virtual machine
and use only facilities available to all Java programmers. We
compare our results to other implementations of R.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—interpreters, optimization; G.3
[Probability and Statistics]: statistical computing

Keywords R language; specialization; lazy evaluation

1. Introduction

Dynamic languages are gaining in popularity in many ar-
eas of science. Octave and R are perfect examples of widely
adopted domain specific languages that were developed by
scientists, chemical engineers and statisticians respectively.
They are appealing because of their extensive libraries and
support for exploratory programming. Yet, both are painfully
slow and memory hungry; R programs can run hundreds
of times slower than equivalent C code [10]. Inefficiencies
sometime force end-users to rewrite their applications in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VEE ’14, March 1–2, 2014, Salt Lake City, Utah, USA.
Copyright c� 2014 ACM 978-1-4503-2764-0/14/03. . . $15.00.
http://dx.doi.org/10.1145/2576195.2576205

more performant languages. This is clearly undesirable and
could be mitigated by better language implementations. Un-
fortunately, as is often the case for community-supported
languages, domain scientists lack the manpower to build a
high-performance runtime and often also the skills to do
so. Their expertise lies elsewhere, chemistry or statistics,
they are language implementers by necessity, not by choice.
Also, even if a high-performance runtime were to be handed
to them, maintenance would likely prove to be a stumbling
block.

We explore how far one can push simple implementa-
tion techniques – techniques that are portable and lever-
age widely deployed technologies – to obtain a performing
language implementation. We aim to show that a relatively
performant interpreter and runtime system can be obtained
without requiring deep knowledge of compiler techniques.
For concreteness, we have chosen to implement a subset of
the R language and to restrict ourselves to an abstract syntax
tree (AST) interpreter built on top of an off-the-shelf Java
virtual machine (JVM). Choosing Java as an implementa-
tion language simplifies maintenance as it is type safe and
provides a high-quality runtime that includes a garbage col-
lector and a threading system. Relying on the JVM gives
us portability across all supported architectures and operat-
ing systems, as well as some basic security guarantees. Of
course this comes at a cost, writing an interpreter in a man-
aged language is likely to be less efficient than in C as we
only have limited access to memory and pay for Java’s run-
time safety checks. Furthermore, implementing R data types
on top of Java objects can lead to less than optimal memory
usage. These costs and benefits have to be balanced when
evaluating the viability of the approach.

R was designed by Ihaka and Gentleman [8] based
on the S language [2]. GNU-R is maintained by a core
group of statisticians and is available under the GPL li-
cense [12]. R is extensible and widely extended, currently
there are nearly 6,000 packages available from the CRAN1

and Bioconductor2 repositories. R is heavily used for data
analysis, visualization, data mining, or machine learning
in fields including biology, environmental research, eco-
nomics and marketing. R has an estimated 2 million installed
base [13].

1 http://cran.r-project.org 2http://www.bioconductor.org

For its first fifteen years or so, R was implemented as
an AST interpreter. This was likely due to the fact that an
AST interpreter is simple to write, portable, easy to main-
tain. In 2011, Luke Tierney added a bytecode interpreter to
improve performance. For compatibility reasons, the AST
interpreter was retained and users can switch between the
two engines freely. Both interpreters (we will refer to them
as GNUR-AST and GNUR-BC) are written in C. We will
use the AST as our baseline for performance comparisons.
With R programs that spend mostly time out of numerical
libraries, bytecode is about 2x faster than the AST. For con-
text, we also consider Renjin, a rewrite of the GNUR-AST
in Java. Renjin is roughly 2x slower than the GNUR-AST.
So, if speedups compose, one could expect that a Java AST
interpreter should be roughly 4x slower than a hand-tuned C
bytecode interpreter.

This paper introduces FastR v0.168, an AST interpreter
for the R language written in Java and capable of running on
any off-the-shelf JVM. FastR leverages the ANTLR parser
generator and the Java runtime for garbage collection and
runtime code generation; native code is invoked via the Java
Native Interface. What makes the implementation stand out
is the extensive use of runtime feedback to perform AST-
specialization [17], data specialization, as well as data and
code co-specialization. These techniques enable the program
to optimize itself by in-place rewriting of AST-nodes. To this
we added a number of interpreter optimization tricks. The re-
sult is an interpreter that runs roughly 5x faster than GNUR-
BC and about 8x faster than GNUR-AST. The remainder of
the paper will describe our implementation techniques and
argue that they remain simple enough to be maintained and
extended by domain experts.

2. The R language and its implementation

R is a dynamically-typed, lazy functional language with
limited side-effects and support for computational reflection.
The authoritative description of R is its source code [12].

Data types. R has few primitive data types, namely, raw
(unsigned byte), logical (three-valued booleans), integer
(signed 32-bit), double, complex, and string. Missing ob-
servations are denoted by NA. For integers, NA is the smallest
integer representable, for doubles, one of the IEEE NaNs is
used, and for logicals, NA is a special value. Integer over-
flow results in an NA. All values are vectors of zero or more
data points of a base type. Values can have attributes, which
are lists of name-value pairs that can be manipulated pro-
grammatically. Built-in attributes define dimensions, names,
classes, etc. Operations are vectorized; they perform type
conversions when values are not of the same type, and for
vectors of different lengths, re-use elements of shorter vec-
tors. R has several other data types including lists – poly-
morphic vectors capable of holding values of different types
– closures, built-ins, language objects, and environments.

Functions. Functions are first class. They nest and have
read/write access to their lexical environment. R also sup-
ports dynamic scoping with a global environment and pack-
age environments. Copy semantics provides the illusion of
referential transparency; each assignment semantically cre-
ates a deep copy of the original value. An exception is en-
vironments, which are passed by reference. Functions may
have formal arguments with default expressions. Arguments
are matched by name, by unique prefix match on name, and
as a last resort, by position. Arguments are evaluated lazily,
using promises. Default expressions are packed in promises
that evaluate in the called function while accessing data from
the caller scope. Promises cache their results to avoid wast-
ing computational resources and performing any included
side-effects multiple times.

Meta-programming. Environments can be created syn-
thetically and attached to the current variable search path
or to closures. Reflection allows to change variable values,
add new variables, or even remove variables from any envi-
ronment unless the variables are locked. Code can be stored
as a “language object”, passed around and evaluated using
eval in any environment. Language objects can also be cre-
ated dynamically, e.g. by parsing a string.

Environment. R runs in a read-eval-print loop. R has about
700 built-in functions. R supports calling into native code,
particularly with focus on C and Fortran. It interfaces with
the BLAS and LAPACK numerical libraries and includes a
modified version of LINPACK.

Interpreter. GNU-R is implemented in C and Fortran.
GNU-R parses source code and generates an AST repre-
sented by lists of language objects. Evaluation follows the
AST structure. Most nodes translate to function calls. Spe-
cial functions, such as assignment, loops, or even braces,
are dispatched to native C code that also evaluates argu-
ment expressions. Calls to closures are dispatched to evalu-
ation of their bodies, with argument expressions packed into
promises. The interpreter keeps a stack of execution con-
texts for stack traces in case of errors and for control flow
operations such as loop break, continue, function return,
or exception. Each execution context includes a target for C
level non-local jump. Function environments are linked lists,
where each element has a value slot and a symbol. Function
environments are searched linearly whenever looking up a
variable. Arguments are passed in heap-allocated lists of
name/value pairs. Argument matching is done by reorder-
ing argument lists in three passes: for exact name matching,
unique name prefix matching, and positional matching. Ex-
cessive copying is avoided through dynamic alias analysis
(or bounded reference counting) — each value has a refer-
ence count 0 (temporary), 1 (bound to at most one variable),
2 (possibly bound to more than one variable). Vector up-
date operations avoid copying when the reference count is
at most 1. The reference count is never decremented and is

not relevant for memory reclamation. GNU-R implements
a non-moving generational mark-sweep collector with free-
list based allocation.

3. Architecting a new R engine

FastR is a Java-based interpreter for a subset of the R lan-
guage including most of the features of the language such
as data types, functions, global environment, lazy evalua-
tion, language objects, and eval. FastR is currently lacking
support for packages and the different object systems imple-
mented on top of R.

FastR is implemented in Java 7 and runs on any JVM. It
relies on the ANTLR 3.4 to generate a Java parser. Mathe-
matical operations are implemented by a mixture of Java and
native code linked from GNU-R’s library (mostly NMath
and modified LINPACK), BLAS, LAPACK, and the system
Math library. We use Javassist 3.18 to generate Java source
code on the fly for operator fusion.

The current code base consists of 1358 classes, and
66KLoc (including comments and empty lines). The pack-
age structure is given in Figure 1; the majority of program-
ming effort is split between data types (13KLoc), built-in
functions (18KLoc) and basic operations (26KLoc in pack-
age r.nodes.exec). The ANTLR generated parser and lexer
account for additional 10KLoc. In comparison, the core of
GNU-R is 141KLoc of C code and the whole GNU-R code
base goes up to 1.3MLoc.

R code can be entered at the console or input from a file.
The parser creates a parse tree from source code. For execu-
tion, a more suitable kind of ASTs, called executable trees,
is used. The conversion from parse trees to executable trees
happens on demand, nodes lazily convert themselves when-
ever they are encountered during evaluation. Executable
nodes retain a reference to their parse tree so as to pro-
duce user-friendly error messages. During execution, the
interpreter continuously rewrites executable trees, selecting
optimal implementations of operations based on runtime
information available at each node. This form of code spe-
cialization is one of our key optimizations. FastR supports
data specialization with multiple implementations of com-
mon data types optimized to take advantage of character-

Package # of files # lines of code
r 8 1625
r.builtins 179 18715
r.data 20 4659
r.data.internal 28 8252
r.errors 2 1789
r.ext 3 110
r.ifc 1 172
r.nodes.ast 56 1794
r.nodes.exec 32 26113
r.nodes.tools 5 1880
r.runtime 7 1436

Figure 1. FastR package structure.

LIBGNUR

BLAS

LAPACK

JNI

.r.r.r
JVM

Parse tree

Exec tree
ANTLR
Parse

Execution

View

Figure 2. FastR Architecture. R code is turned into parse trees.
As execution proceeds, parse trees are transformed into executable
trees. Data is allocated in the Java heap and views are created to
delay and bunch the execution of vector operations. Native code is
accessed through JNI.

istics of the actual data. The other important optimization
is the delayed evaluation of vector operations. FastR intro-
duces views which perform data and code co-specialization.
A view represents a vector operation that can be performed
element-wise or in bulk and that can depend on other views,
forming a view tree. Individual views in a view tree can
also be fused together. Figure 2 summarizes the high-level
architecture of the interpreter.

3.1 A traditional AST interpreter

FastR, at its core, has a naive abstract syntax tree interpreter
that uses the native Java stack to store the execution state
(a pointer to an executable node) and Frame objects to hold
name-value bindings for arguments and local variables. Exe-
cution of a node boils down to calling that node’s execute()
method. Figure 3 shows an If node with children represent-
ing the condition and the true and false branches. The call to
executeScalarLogical speculates that the condition evalu-
ates to a scalar logical, as opposed to a vector or any other
type, otherwise an exception is thrown and conversion or
subseting is performed.

class If extends BaseR {
RNode cond, tBr, fBr;
Object execute(Frame frame) {
int c;
try {
c = cond.executeScalarLogical(frame);

} catch (SpecException e) { ... } //Recovery
return (c==TRUE ? tBr:fBr).execute(frame);

} }

Figure 3. Sample executable node (simplified).

3.2 Data layout

Basic R data types are represented by Java objects in
the most straightforward fashion. Classes ComplexImpl,
DoubleImpl, IntImpl, ListImpl, LogicalImpl, RawImpl,
StringImpl denote vectors of the corresponding base types.
Each holds a Java array for the payload, an array of dimen-
sions in case the vector is used as a matrix or n-dimensional
matrix, a list of names, a set of attributes and an integer ref-
erence count. FastR has two other data types, Closure which

bundles a Frame with the attached code as executable node
and Language which represents source code using AST tree
and can be passed to eval.

4. FastR optimizations

We detail the optimizations applied to our base interpreter.

4.1 Pre-processing

The pre-processing step that translates parse trees into ex-
ecutable trees is an opportunity to perform optimizations.
After profiling of our workloads, we identified three trans-
formations as being profitable: return elision, loop unrolling
and variable numbering.

Return elision. In R, return is a one-argument call which
terminates execution of the current function and returns the
argument to the function’s caller. FastR implements it using
a Java exception — return throws a pre-allocated singleton
and the return value is stored in the Frame. The semantics of
R specifies that, absent an explicit return, a function yields
the value of the last expression evaluated. Thus, semanti-
cally, any function that has, as its last statement, a return, is
equivalent to the same function without it.

Trailing returns are elided by a simple control-flow anal-
ysis and rewriting to deal with control flow patterns such as:

function(...) {
if (condition) {
...
return(value)

}
rest

}

)
function(...) {
if (condition) {
...
value

} else {
rest

} }

As return can be redefined by the user, FastR monitors
redefinitions and rewrites the executable tree to implement
the semantics of the non-optimized form.

Loop unrolling. The code specialization optimization that
we will describe next requires a certain amount of stability
in the code executed. We have observed that many loops
must be evaluated once before they stabilize, i.e. the type
information required for specialization be apparent to the
interpreter. Consider a loop that performs double arithmetic
on an integer vector. The first iteration of the loop will cause
coercion of the vector and the change of type from integer
to double will confuse the specialization optimization. To
avoid this, all loops are unrolled once by rewriting loop
nodes to special nodes that have two bodies. The first loop
body runs for the first loop iteration, while the second runs
for the following iterations. We have observed significant
performance improvements after adding this optimization to
for loops.

Variable numbering. R has baroque variable declaration
and lookup rules which allow new variables to be injected
into an existing environment. Thus, a naive implementation
would implement an environment as a hash map of symbols
to values (or a list of pairs), and the lookup would have to

check all lexically enclosing environments up to the global
scope, making variable access expensive. FastR attempts to
speed up the common case when local variables are looked
up and reflection is not employed.

Environments use different Frame classes: GenericFrame
has an Object[] to hold values and 5 specialized Frame

classes for environments of 0 to 4 variables hold their values
in fields, avoiding the need for indirection through the array.
A FrameDescriptor holds the names of frame’s variables.
Descriptors are shared across multiple invocations of a func-
tion, while each invocation has its own frame. Additional
variables can be kept with their names in a FrameExtension,
which can be either linear (values searched sequentially by
name), or hashed. A frame extension is private to an invoca-
tion of a function.

To avoid hashing on local variable lookup, a simple static
analysis runs at parse tree translation time. We collect a
write set W of variables written to in each function. Each
variable in W is assigned a unique number. This number is
the index of the variable’s value in the frame. Accessing a
variable by index side steps hashing. A reflective operation
may introduce a new variable to a frame: if a variable does
not occur in W , it will be installed in the frame extension.
The new variable may also shadow a variable defined in an
enclosing environment. If this happens, the corresponding
frame is marked dirty.

Reads are slightly tricky. For a non-reflective read of a
variable in W, the variable’s index in the frame can be used.
If the variable is not in W of the current function, but is in
W of some lexically enclosing function, its index and the
number of hops required to get from the current frame to the
target are recorded during the static analysis and are used
to speed up the lookup. When performing a non-local read,
the dirty bit of the frame that has the variable in W must be
checked. If a dirty frame is encountered, then the interpreter
reverts to the slower hashed lookup. A read must also check
that the variable has indeed been defined, because entries in
W include all possible variable declarations, some of which
may be in branches not taken or not-yet-taken.

4.2 Code specialization

Specialization is used pervasively. As a program executes, its
executable tree is continuously updated to leverage runtime
information. Execution of a program represented by an ex-
ecutable tree P (or AST in systems that execute it directly)
and a program state S proceeds stepwise. Evaluation of a
node updates both program and state:

P, S ,! P 0, S0

In practice, we restrict ourselves to local modifications of
executable trees. Assume a tree with nodes n0, n1, n2 . . .
such that n0 ! n1 ! {n2 . . . } (! denote the parent
relationship). If the current node is n1, we allow:

1. Replace node: n0 ! n ! {n2 . . . }.

2. Replace child: n0 ! n1 ! {n . . . }.

3. Insert above: n0 ! n ! n1 ! {n2 . . . }.

Specializations are driven by runtime information with no
inherent guarantee of soundness. Any rewriting may alter
the meaning of the program to yield incorrect results when
the node is encountered again. To prevent this, we perform
guarded specialization. There are two kinds of guards: inline
guards and watchpoints. Inline guards simply check that the
predicate that was used to specialize a node holds when
the node is evaluated again. Watchpoints can register node
rewritings to be performed if a particular event occurs, such
as redefinition of a symbol in the global scope. Inline guards
can sometimes be replaced with watchpoints or elided. For
instance, an If node is specialized on the assumption that
the condition yields a scalar, non-NA, value; if the condition
happens to be a call to, say, is.na, FastR infers that unless
the built-in is redefined it will return either TRUE or FALSE.
Thus, no guard is required, instead a watchpoint is registered
for changes to is.na. If we further assume that changes to
built-ins are disallowed, the check disappears entirely.

When a guard fails, a Java exception is thrown and the
programmer must provide recovery code to rewrite the tree
to a semantically meaningful version. Our implementation
does not mandate convergence of rewritings. This can be
the right behavior for code that processes different types at
different stages in the program, but pathological cases are
possible where a node keeps getting optimized only to be
de-optimized right after. If this is a risk, programmers can
choose to maintain a bound on rewriting any given node,
which we do in FastR.

Dealing with recursion is tricky as a node may appear
multiple times on the call stack. This can lead to an in-
consistent tree rewrite. Consider the evaluation of n !
{. . . ni . . . } in function f. Rewriting n to n0 can occur at
any time, say after child ni has been evaluated. If another in-
stance of f is also in evaluating n, it may not realize that the
node has been removed from the tree and it may try to per-
form a replacement itself. To prevent this, developers must
check that a node is in the tree to execute it. When a node
is kicked out of a tree, it retains a reference to its replace-
ment node. Consider the execute() method of the If node.
It checks if the current node has been replaced during eval-
uation of the condition node, and if so, proceeds with the
replacement (Figure 4).
We have described the mechanics of specialization. But what
and when should one specialize? The key for performance is
choosing specializations with inexpensive guards and reduc-
ing the risk that hot code gets stuck in generic nodes. Care-
ful profiling of workloads is necessary along with a deep
understanding of the semantics of the language and its li-
braries. As to when to specialize, we sometimes create unini-
tialized nodes which have no other behavior than wait to
see the shape of their arguments and immediately rewrite
themselves. In other cases, we have generic nodes that im-

Object execute(Frame f) {
int c;
try {
c = cond.executeScalarLogical(f);

} catch (SpecializationException e) {
return (replaced() ? replacement : this).

executeWithFailedCond(f, e.getResult());
}
return (replaced() ?
replacement : this).executeWithCond(f, c);

}

Figure 4. The If node’s execute method.

plement the full, but slow, semantics of the operation, and
rewrite themselves, after execution, to a more specific ver-
sion. Lastly, some specializations are eager, speculating on
likely values and properties of arguments.

Arithmetic. The Arithmetic class is one of the largest with
close to 8KLoc; it contains nested classes that implement the
Add, Sub, Div, Mod, Mult, and Pow operations for numeric data
types. Figure 5 shows an extract of this class. This executable
node has two fields for children and fields that describe the
specific operation to be performed by the node. The execute

method first evaluates both children, checking, each time,
that the current node was not replaced. Equipped with values
of subexpressions, a specialized version of the node is con-
structed. The SpecializedConst class is used if one of the
arguments was a constant expression. This class specializes
the evaluation by hard-wiring a constant. The node is then
replaced and the execute method of the specialized node is
invoked to perform the actual computation. From that point
on, the specialized node will be called directly.

class Arithmetic extends BaseR {
RNode l, r; ValArit arit;

Object execute(Frame f, ASTNode src) {
Object lx = l.execute(f);
if (replaced())
return replacement.execute(f, lx, src);

Object rx = r.execute(f);
if (replaced())
return replacement.execute(lx, rx, src);

Arithmetic s = (l instanceof Constant
|| r instanceof Constant) ?
SpecializedConst.mk(lx, rx, src, l, r, arit) :
Specialized.mk(lx, rx, src, l, r, arit);

return replace(s).execute(lx, rx, src);
} }

Figure 5. The Arithmetic node is the entry point for arith-
metics.

Arithmetics specializes on scalar arguments with inline
guards for particular combination of argument types such as:
both are integers, left is double and right is integer, etc. Spe-
cialized nodes include necessary casts and NA checks. FastR
has nodes for operations where argument types alternate be-
tween integer and double as this shows up in our workloads.

For vector arithmetics, specializations exist for com-
mon shapes, i.e. combinations of types and dimensions,
e.g. when vectors are of the same length. Vector operations

check the reference count of the arguments; if the reference
count is zero then that vector is a temporary and can be
reused for the result. Some arithmetic operations like mod

and pow can be off-loaded to native code, as their Java im-
plementation is notoriously slow. Data is passed as primitive
array without copying.

Variable access. Variable access is a frequent operation
with a number of specialized nodes. Pseudo-code for the
uninitialized read node is in Figure 6. If the node executes
in the global environment (the frame is null), it will always
execute that way, and hence goes directly to the symbol table
without checking dirty bits (readOnlyTopLevel). Otherwise,
if the variable has a local slot (is in W), it will always be at
the same index, the read unconditionally accesses the slot in
the frame (readLocalSmallFrame) or in an array referenced
from the frame (readSimpleLocal). Otherwise, the value
has to be searched in the global environment, but checking
the dirty bit to ensure it had not been inserted reflectively
(readTopLevel).

We observe that variables in the global environment
rarely get changed after initialized. Hence, if the unini-
tialized read node is able to find a value for the vari-
able in the global environment and the symbol is clean,
it creates a specialized node to always return this value
(readStableTopLevel). If the value changes or is shadowed
by a reflective write, a watchpoint will undo the rewrite.

Last, in the uninitialized read node, if there is no local
slot for the variable, but there is one in a lexically enclos-
ing function, that enclosing slot will always be there when
this read node executes and it will be the closest one —
EnclosingIdx contains the number of hops to a lexically en-
closing frame and the index of the slot in that frame. The
read node hence specializes to one that always checks that
enclosing slot (readEnclosing) for the value and also the
dirty bit of that enclosing frame. When a dirty frame or sym-
bol is found, the read operation has to check extensions of
all frames on the lexical stack, up to the one that has a fixed
slot for the variable.

class UninitializedRead extends ReadVariable {
Object execute(Frame f) {
ReadVariable node;
int idx; EnclosingIdx eidx;
if (f == null)
node = readOnlyTopLevel(ast, symbol);

else if ((idx = f.findVariable(symbol)) != -1)
node = f instanceof SmallFrame ?

readLocalSmallFrame(ast, symbol, idx, f):
readSimpleLocal(ast, symbol, idx);

else if ((eidx = f.readSetEntry(symbol))==null) {
node = readStableTopLevel(ast, symbol);
if (node == null)
node = readTopLevel(ast, symbol);

} else
node = readEnclosing(ast, symbol, eidx);

return replace(node).execute(f);
} }

Figure 6. This class is the entry point for all variable reads.

ReadSimpleLocal (Figure 7) reads a variable from a
known index of a frame. If the read value is a promise, it is
forced. The node speculates that the variable has been initial-
ized. If this assumption fails, the node rewrites to readLocal,
which can handle the general case (looking up through en-
closing slots, their dirty bits, possibly frame extensions and
global environment). Generally, we observed that keeping
performance critical nodes small helps the JIT compiler of
the JVM generate faster code.

class ReadSimpleLocal extends ReadVariable {
final int idx;
Object execute(Frame f) {
Object value = f.getForcing(idx);
return value != null ? value :
replace(readLocal(ast,symbol,idx)).execute(f);

} }

Figure 7. This class implements read of local variables by index.

Functions. Function calls are costly as function arguments
can be passed in any order and, thus, they must be matched.
However, we observe that programs almost always call the
same function at a particular call-site. We therefore compute
the matching once and re-use it over subsequent calls. The
closures expect their arguments to be provided in declaration
order. Each call must create a frame for the closure and
populate it with arguments in the expected order. Figure 8
shows the generic call node; argsPos holds the mapping of
argument positions.

We have observed that it is common for functions to be
defined in the global environment and not re-defined. More-
over, functions quite often take only a few arguments passed
by position. Thus, specialized nodes exist for a positional
closure call through a global environment for 0, 1, 2 and 3
arguments. Except a watchpoint for re-definition, this spe-
cialization requires no guards.

Built-ins are slightly different. A builtin is a function that,
unlike a closure, does not have its own environment. A cus-
tom instance of an executable node is created for each builtin
call, specializing for a particular set of arguments. The spe-
cialization covers values of literals, e.g. log(base=10, x)

will use a node specialized for log10. Builtin call sites di-
rectly refer to the body of the built-in and they are protected
by a watchpoint which will rewrite them if needed.

4.3 Data specialization

Data types are represented using Java interfaces, such as
RInt, as to allow data specialization. There is a most general
implementation, e.g. IntImpl, which holds multiple values,
names, dimensions, attributes and a reference count. For nu-
meric types values are held in primitive arrays so that they
can be passed to native code without conversions or copying.
Figure 9 shows an interface to a double vector. Mutating op-
erations, such as set and setAttributes, may return a new
value of the whole data type (i.e. possibly copying a vector).
We support immutable values, which always return a copy

class GenericCall extends FunctionCall {
RClosure lastClosure;
int[] argsPos; RFunction fun;
RBuiltin lastBuiltin; RNode bnode;

Object execute(Frame f) {
Object callable = callableExpr.execute(f);
if (callable == lastClosure) {
Frame nf = fun.newFrame(lastClosure.frame());
placeArgs(callerFrame, fun, argsPos);
return fun.call(nf);

} else if (callable == lastBuiltin) {
return bnode.execute(f);

} else {
//if closure, set lastClosure, argsPos, fun,
//if builtin, set lastBuiltin, bnode; and call

} } }

Figure 8. This class implements generic function/builtin call.

of themselves on an update. The materialize method per-
forms the conversion to the general representation. Method
getContent returns a primitive array in the standard format,
which, may require materialization. Method ref increments
the internal reference count, isTemporary means ref has not
been called, isShared means ref was called more than once.
For an immutable representation, there is no reference count
and the value is always shared.

Simple scalars. Scalars with no names, dimensions, or at-
tributes have an immutable representation with a single field
to hold the payload, e.g. a double for ScalarDoubleImpl. Lit-
erals are represented as simple scalars, and results of com-
putations that can be represented by simple scalars are au-
tomatically converted to those. This speeds up code by re-
moving the indirection required by the primitive array. Also,
checking that a value is a simple scalar is just a simple type
check, making guards in specialized code cheaper.

Simple range. A sequence of integers, written in R as 1:n,
is immutable and has no attributes. The upper bound is re-
membered instead of creating a primitive array (RIntSimple-
Range). Simple ranges often appear in for loops and vector
indexing. The data specialization allows code specialization
of such loops and vector indexing through a type check for
RIntSimpleRange.

interface RDouble extends RAny {
int size();
Attributes attributes();
double getDouble(int i);
double[] getContent();
double sum(boolean narm);
RDouble materialize();
RDouble set(int i, double val);
RDouble setAttributes(Attributes attributes);
void ref();
boolean isShared();
boolean isTemporary();

}

Figure 9. This interface represents a double vector (simplified).

Integer sequence. An integer sequence has an arbitrary
starting point, arbitrary (possibly negative) step, and a size
(RIntSequence). Integer sequences result from R expres-
sions like m:n and from calls to seq. FastR has immutable
specialization for these sequences, saving memory and al-
lowing code specialization of loops and vector indexing.

4.4 Code and data co-specialization

Our last optimization intertwines code and data specializa-
tion by turning code into data. More precisely, rather than
performing operations on vectors, FastR can defer them con-
structing expression trees (or views). Views are first class
values, transparent to the users, which can provide both
speed and memory improvements by defining a different
evaluation order for the vector operations.

Views should not be mistaken with the lazy semantics in-
troduced with promises. First, promises are rather eager [10],
any assignment or sequencing operation will cause them to
get evaluated. Second, promises are exposed to the program-
mer as they are used for meta-programming.

A view is an implementation of one of the R data types
that contains a mixture of data objects and unevaluated op-
erations. It supports materialization to compute the entire re-
sult, individual reads to obtain subsets of the result, and se-
lected aggregate operations such as sum to perform computa-
tion on the result without materializing it. Views are stateless
trees of arbitrary size. Views can cache their results and still
appear stateless to the rest of the interpreter.

Views are built incrementally as the program performs
vector operations. The actual computation is deferred. The
operations allowed in a view include arithmetic and logical
operations (+, /, %/%, %%, *, -, !, &, &&, ...), casts
(int to double,...), builtin functions (ceiling, floor, ln,

log10, log2, sqrt, abs, round, exp, Im, log, Re, rev,

is.na, tolower, toupper), vector index (x[1:10], x[[1]],

x["str"], x[-1], ...). The key criterion for inclusion is
operations whose behavior is solely defined by the value
of their inputs, where computation of individual vector ele-
ments is independent, and that do not have observable side-
effects.2 Views form trees that have values at their leaves. R
semantics (and FastR’s dynamic alias analysis) ensure that
these values will not be modified after the view is created.

In R expressions, operations on vectors can include vec-
tors of different lengths (shorter vectors are reused) and
types (conversions are applied). The size and type of a view
thus depends on its leaves and on the operations applied to
them. FastR uses a view only when determining the result
type and size is cheap. This is true for arithmetics, but not
for many vector indexing modes, such as indexing with a
logical index. Consider the following R program, on the left,
and the view it creates, on the right:

2 Warning messages are one exception, views report warnings retrospec-
tively and in a different order from the original computation.

add1 <- function(a) a+1

x <- 1:1000
y <- add1(x)
z <- y + x

"+"(
"+"(

"cast"(Seq(1000)),
1

),
"cast"(Seq(1000))

)

Executing the above code will leave z pointing to the view on
the right, with no actual computation performed. The bene-
fits of views come into play when we try to access the re-
sult, for instance print(z). In this example, we can avoid
allocating temporary vectors for x and y. No temporary is
needed and, if print accesses z element-by-element, there
will even be no allocation for the result vector: if the user
requested only one value, e.g. print(z[[1]]), then no allo-
cation would be needed and the value would be computed
directly for the first element only.

Deferred element-wise computation is not always going
to help. For very small vectors avoiding temporaries will not
make a big impact and the overhead of interpreting the tree
will not be amortized. Moreover, views can lead to redun-
dant computation due to element vector re-use (repeatedly
computing data points of a shorter vector) or simply by re-
using the view in the R program for multiple computations.
An extreme example of a redundant computation would be
a recursive view, e.g. a computation such as x = x * x + c

performed in a loop.
Specialization is used to heuristically find when it pays

off to compute using a view. Every executable node that per-
forms an operation supported by views will return a profiling
view (PView) when first executed. PViews record the num-
ber of calls to methods of the view that access individual
elements (get), access all values (materialize) and call to
aggregators (e.g. sum), as well as other statistics about the
views such as size and type. A PView also installs a listener
on assignment of a view to detect recursion. The profile filled
in by a PView is attached to the executable node which cre-
ated it. When this node executes next, it will rewrite itself
based on the profile, either to a node that always creates a
view, or to a node that always materializes its inputs and
performs the computation on them eagerly. The heuristic of
Figure 10 decides when to be eager. There could be adver-
sary programs which will not work well with it, such as when
multiple views are created by a node before the first one is
used, but the view is not recursive. Or, when the size of a
vector created by a particular node will significantly increase
during execution. Or, when a PView is passed to a very ex-
pensive computation.
Even eager computation can be optimized, for instance when
an operation has a temporary input (ref count 0) of the same
type as the result, it can be re-used. Performing operations
one vector at a time can be easily off-loaded: we have ob-
tained big speed-ups for pow and FP mod by evaluating them
in native code as these functions are notoriously slow in Java.
Some operations can be off-loaded even if they are in a view

boolean shouldBeLazy() {
if (isRecursive || size == 0) return false;
if (noAccesses) return true;
if (size < 20) return false;
if (externalMaterializeCount > 0 || externalGetCount

> size || internalGetCount > size) return false;
return true;

}

Figure 10. Heuristic choice of lazy/eager arithmetic.

that is being materialized. When materializing, one needs
first to obtain a vector for the result; this is done by allocat-
ing a fresh vector. This vector can be used to store temporary
results and allow some views of a view tree to be material-
ized eagerly, possibly off-loading the operations. FastR im-
plements a heuristic when it performs materialization of a
view using eager computation, whenever possible without
allocating an extra buffer.

In addition to avoiding temporaries, view trees encode a
simple program with semantics far simpler than Java or R.
This program is easier to optimize. E.g., a view tree that
is externally only used from its root can be automatically
fused into a single view, which implements all operations
of the view tree. FastR implements fusion using Java byte-
code generation and dynamic loading. As we have observed
with our benchmarks, even without explicit fusion, the JIT
of the underlying JVM can often devirtualize the get call
from a parent view to its child and inline it, essentially
doing the fusion. This is, however, unlikely to work well in
complicated programs.

4.5 Implementation complexity

The optimizations we describe have a cost in code complex-
ity and code bloat. This cost is hard to measure, as the opti-
mizations are not encapsulated like e.g. phases in a compiler.
Instead, they are mostly rules and tricks for how to write
the interpreter code, and they make the code harder to un-
derstand and bigger compared to a hypothetical naive AST
interpreter. Our design choice was to isolate complex code
and reduce code bloat with standard Java features (polymor-
phism, etc) rather than using additional tools e.g. for code
generation or meta-programming.

The code complexity is increased by self-optimization.
The AST tree has to be copied into the executable tree.
Each executable node has to be written so that it can be
safely removed from the tree, and even so while an in-
stance of it is executing. After executing each child, a
node has to check if it has been replaced, possibly contin-
uing execution in the replacement node. This replacement
logic has to be implemented specifically for each node and
each of its children. The replacement code (catch blocks of
SpecializationException) is about 3% Loc of the code
base excluding the generated parser. There is an additional
overhead in execute methods related to checking if a node
has been replaced and some overhead with maintaining re-

placement nodes. While the replacement logic is complex,
it does not add many lines of code, because it is shared by
executable nodes of a similar kind (e.g. arithmetics, logical
operations, comparison, unary Math function, etc). Also, the
replacement code is expected to run rarely, so it does not
have to be fast.

Code specialization by definition increases the code size.
For example, the ReadVector class implements nodes for in-
dexing a vector (2KLoc), but 70% of this code is for special-
ized cases, such as that the index is a scalar integer within
bounds or the index is a logical vector of the same length
as the base vector. Implementing these cases is no harder
than implementing the general case any AST interpreter will
need to have. Still, they pose substantial code bloat: over two
thirds of the specialized cases in ReadVector require thought
and in their present form could not be generated. This in-
creases the amount of maintenance work needed, but not the
set of skills to do the maintenance.

Less than a third of specialized cases in ReadVector are
copy-pasted with mundane edits, e.g. the implementation of
a subset of a double vector using an integer sequence is
essentially the same as of an integer vector, but has to be
implemented as a distinct class. Similar types of mundane
bloat appear in the whole code base. Such bloat is due to
the choice of Java, not because of our optimizations. In
C/C++, one could avoid it using templates, macros, multiple
inheritance, and unsafe casts.

5. Related Work

Our work was inspired by Truffle [17], a framework for writ-
ing AST interpreters under development at Oracle Labs. It
encourages programming in a self-optimizing style. Future
version of FastR will use it and the companion optimiz-
ing JIT compiler called Graal. Our approach to code spe-
cialization is related to techniques developed for Self [3]
and trace-based compilation [6]. Earlier work on program
specialization, e.g. [4], used the term data specialization to
mean memoization of expensive computations, where we ac-
tually specialize the data types themselves. In the terminol-
ogy of [9], we perform code specialization that is both dy-
namic and optimistic. The idea of data specialization can be
traced back all the way to the notion of drag-along in APL
implementations [1].

The GNU R bytecode interpreter [15] translates AST
to bytecode on-the-fly at the granularity of a generalized
call (e.g. a function or a loop). The only optimizations per-
formed by the compiler are constant folding, inlining, and
tail call optimizations. Many non-local jumps can be re-
placed by local transfers of control. No specialization is
performed. The bytecode compiler optimizes local variable
look-up by caching them into a constant-indexed array, but
unlike FastR, variables in enclosing environments are not
optimized. GNU-R can be extended with RcppArmadillo
which is a lazy vector Math library [5]. But unlike FastR,

lazy vector operations have to be extracted manually by pro-
grammers from their R code.

Renjin3, like FastR, is an AST interpreter for a subset of
R running on a JVM. Unlike FastR, it mirrors the imple-
mentation of GNUR-AST, including internal data structures.
Renjin implements lazy computation similar to views. Cer-
tain views can be cached, parallelized and sometime fused,
but arithmetic vector operations are not parallelized and are
prone to repeated computation. Work on compiling simple
basic blocks into Java bytecode is ongoing.

Riposte [14] implements a subset of R. It defers vector
operations, producing a trace with operations on typed vec-
tor futures analog to our views. Traces are limited to operate
on vectors of the same length, but the operations may origi-
nate from different expressions in the R source code. Traces
are compiled to 64-bit Intel machine code with optimiza-
tions that include vector instructions, algebraic simplifica-
tion, constant folding, and common subexpression elimina-
tion. Traces can be fused and parallelized. To avoid redun-
dant computation, Riposte computes and caches all futures
reachable from R variables at the time the trace is compiled
and executed. This may lead to unnecessary computation of
futures. Scalar code is not optimized.

pqR4 is a modified version of GNU-R 2.15.0. It adds
some data specialization, e.g. for integer sequences. It re-
places the bounded reference counts by full reference count-
ing with decrements to reduce the need of copying on vector
update. It offloads some numerical computations to helper
threads, running them asynchronously.

6. Performance

We compare performance of FastR against the GNUR-AST
to evaluate the impact of all optimizations implemented to
date. We also compare against GNUR-BC with its high-
est optimization level, as it is the best performing official
implementation of R. We are targeting longer-running pro-
grams (benchmarks are dimensioned to run 1-2 minutes with
GNUR-BC). There are fixed costs of starting up a JVM,
JIT compilation, and FastR self-optimization. We include
the whole execution into the measurement, including these
start-up costs.

6.1 Benchmarks

We run all benchmarks from the Benchmark 2.5 suite [16]
(b25) and the Language Shootout benchmarks [7] (shootout).

Benchmark 2.5. The b25 benchmarks5 comprise of three
groups, each with five micro-benchmarks: matrix calcula-
tion (mc), matrix functions (mf) and programming (pr). The
workloads are summarized in Figure 11. Most but not all
of the workloads include a trivial amount of R code and R
interpretation only takes a small fraction of their execution

3 http://www.renjin.org
4 http://radfordneal.github.io/pqR
5 Sometimes referred to as AT&T R Benchmarks.

mc1 Double square matrix transposition
mc2 Power function, double vector over scalar
mc3 Quicksort on a double vector
mc4 Cross-product of a double square matrix (AT ⇥A)
mc5 QR decomposition of a double square matrix
mf1 Fast Fourier transformation of a double matrix
mf2 Eigenvalues of a double matrix
mf3 Determinant of a double matrix
mf4 Cholesky decomposition, cross-product of a double matrix
mf5 Solve equations via QR decomposition
pr1 Power function scalar over double vector, arithmetics
pr2 Square integer matrix transpose, arithmetics
pr3 Grand common divisors, vectorized
pr4 Toeplitz matrix (nested loops with scalars)
pr5 Escoufier’s method (vectors, loops, function calls)

Figure 11. Benchmark 2.5.

time. Much time is spent in numerical algorithms in native
code. The benchmarks use BLAS and LAPACK numerical
libraries. Most of the benchmarks use random number gen-
erators implemented in native code (NMath part of GNU-
R). One of the benchmarks uses the native fft. FastR uses
the same code through JNI. Some numerical algorithms are
harder to re-use and were re-implemented in Java following
the original C implementation, an example is the estimation
of correlation coefficients. Two of the benchmarks use ma-
trix transposition. We implemented a blocked version of a
square matrix transposition in Java that is faster than the sim-
ple implementation in GNU-R. We also specialized the ran-
dom number generators for batch generation from one dis-
tribution with identical parameters because calling through
JNI for every single number was too slow. The most R in-
tensive workloads are pr5 and pr3; pr4 also spends all time
in R, but is quite simple. Workloads mc2, pr1 and pr2 are
based on arithmetics on long vectors, so they are still some-
what affected by the R interpreter design. None of the origi-
nal benchmarks outputs any results, which makes validation
of the computation hard. Worse yet, FastR with lazy compu-
tation can run some of them without actually doing most of
the computation. We modified the benchmarks so that they
aggregate their result and print it. This forces computation
and provides a value to check.

Shootouts. The shootouts are R implementations of prob-
lems from the Computer Language Benchmarks Game [7].
The R implementation was written by a computer science
student and optimized for speed on GNUR-BC. The pro-
grams are small applications, they produce an output to
check, and stress different parts of an R implementation. Un-
like b25, most of the shootouts are dominated by execution
in the interpreter. The exceptions are sn6 (spends a lot of
time in BLAS) and rd (dominated by regular expressions
matching library). For each problem, the R version of the
shootout suite [11] includes a “main” implementation and
several alternative implementations. We run all variants un-
modified, except for a performance irrelevant fix needed to
run kn3 in R. We also replace the use of internal calls to the
GNU-R interpreter by more standard equivalents (kn1-4).

binarytrees Allocates and traverses binary trees
bt GC benchmark, recursive calls, recursive lists

pfannkuchred Solves a combinatorial problem
pr Loops, indexing short vectors

fasta Generates DNA sequence by copying, rand. selection
fa String operations, scalar arithmetic

fastaredux Solves same problem as fasta
fr Adds more loops, vector indexing and arithmetic

knucleotide Finding patterns in gene sequences
kn Uses environment as a hashmap, string operations

mandelbrot Calculates a Mandelbrot set (fractal image)
ma Vector arithmetic on complex numbers

nbody Solves the N-body problem (simulation)
nb Arithmetic, Math with short vectors

pidigits Calculate digits of pi using spigot algorithm
pd Arbitrary precision arithmetic in R (diverse code)

regexdna Matching, replacing regex-specified gene sequences
rd Regular expressions (falls back to regex library)

reversecompl Computing reverse-complements for gene sequence
rc String vector indexing using string names

spectralnorm Computing eigenvalue using power method
sn Loops, function calls, scalar arithmetic

Figure 12. Shootout.

The shootout problems are listed in Figure 12, including
which aspect of an R interpreter does the main implemen-
tation stress. The alternative implementations always solve
the same problem as the main one, but may stress different
parts of an R interpreter from the main version. In particular,
some of the alternative versions of sn and fa use more vec-
tor arithmetic than the main version. The biggest and most
complicated program is pd (400 lines of code).

6.2 Measurement Methodology

We dimensioned benchmarks to run approximately 60 sec-
onds with GNUR-BC on a development laptop and fit to
7G heap (sn3 needed a shorter run to fit in memory).
On the measurement platform, the benchmarks run mostly
over a minute, some about 2 minutes. We dimensioned the
shootouts via their size parameter (those that accept out-
put from the fa benchmark via sizing fa). We dimensioned
b25s by finding the best iteration count for the outer loop,
hence the same computation is repeated, but on different data
(these benchmarks generate random inputs and set the ran-
dom seed prior to entering the outer iteration loop). For Ren-
jin and the b25 experiments, however, we measure b25 with
a smaller number of iterations (so that Renjin runs about a
minute), and then scale the result to the iteration count of
the other VMs. This was needed at least for pr4 which has
a two orders of magnitude slow-down, and we did it for all
b25 benchmarks with Renjin.

We run each benchmark from either suite 10 times, for
each VM, and then report a ratio of mean execution times of
FastR, GNUR-BC, and Renjin each against GNUR-AST. We
calculate a 95% confidence interval for the ratio of means
using the percentile bootstrap method. For a quick summary,
we also calculate the geometric mean of the ratios (that is the
ratios of means) over each benchmark suite. The geometric
mean has to be taken with a grain of salt, though, as perfor-
mance changes tend to be dominated by several benchmarks

from each suite (pr4 from b25 and kn from shootout). The
overall speedup is thus a measure of how many of outly-
ing benchmarks are in the suite. If the author chose to add
say one more variant of kn to the shootouts, FastR speed-
ups will likely be also great for it, and the geometric mean
would increase a lot, as opposed to adding another variant of
say rd. Similarly, if the author of b25 chose to add yet an-
other benchmark that spends all time in LAPACK, the over-
all FastR speedup will drop. If that was another benchmark
like pr4, it would increase. Still, the choice of geometric
mean is more robust against the outlying benchmarks than
would e.g. an arithmetic mean be. We intentionally do not
calculate an error bar for the overall mean, as it would be
giving a false level of confidence given the described issues.

6.3 Platform

We run our benchmarks on Dell PowerEdge R420 (2x In-
tel Xeon CPU 2.10GHz, 48G RAM) with 64-bit Ubuntu
12.04. We use GNU-R 3.0.2 compiled with default options
by GCC. For GNUR-BC, we use the highest optimization
level available (3). We run FastR on 64-bit Oracle JDK 1.8
(early access release), linking against system libraries in-
cluding the R library. We run Renjin on the same JDK8, but
compile it with JDK7 due to build problems with JDK8. We
use the Oct-15-2013, github version of Renjin. We run all
VMs with the Ubuntu version of openBLAS.

6.4 Results

The relative execution time of FastR and GNUR-BC nor-
malized to GNUR-AST is shown in Figure 14 (b25) and 13
(shootout). The plots include error bars (95% confidence in-
tervals), but the variation with most benchmarks is small.

Shootout benchmarks. On geometric average, FastR is
8.5x faster than GNUR-AST (while GNUR-BC is 1.8x faster
than GNUR-AST). The biggest speed-ups are on the kn

benchmarks. The benchmark uses a hash-map to look up
gene sequences, and individual versions of kn differ in how
they represent the hash-map (kn1 uses an environment, kn2
and kn3 use an attribute list, kn4 uses a named vector). FastR
speed-ups come from optimization of these structures, e.g. a
named vector in FastR remembers a hash-map of its names;
this hash-map and the names are immutable, and hence can
be propagated through operations with no cost. Attributes
in FastR have a trie structure for fast matching of attributes
based on their prefix. This trie is mutable, but can still be
propagated through operations (the originating owner looses
the trie and will have to re-build it in case matching becomes
needed again). Most benchmarks then benefit from code and
data specialization, and few from lazy vector computation.
bt particularly benefits from function call optimizations and
data/code specializations for scalars. pr particularly benefits
from data specialization for integer sequences and from loop
and vector indexing specializations. nb particularly benefits
from optimized vector computation (not computing small

vectors lazily). rc particularly benefits from vector index-
ing optimizations. sn benefits from vector and matrix in-
dexing optimizations, loop optimizations, and lazy vector
arithmetics. fa and particularly pd are relatively diverse and
benefit from various optimizations.

Benchmark 2.5. On geometric average, FastR is 1.7x
faster than GNUR-AST (and GNUR-BC is 1.1x faster than
GNUR-AST). The relatively small speedup is explained
by the preponderance of native calls. FastR offers biggest
speed-up with the pr4 benchmark. This is due data/code
specialization for scalars, including loops, matrix indexing,
arithmetic and Math operations. pr3 speedups are thanks
to specialization of vector operations (arithmetics, compari-
son, vector indexing using the result of a comparison). pr2
and mc1 benefit from optimized matrix transposition, pr2
also from lazy vector arithmetic. pr5 benefits from special-
ization for integer sequences and from code/data special-
izations of vector operations. Also, pr5 takes advantage of
function call optimizations. The remaining speed-ups are
mostly from specialization of the random number generator
wrappers.

Renjin. Renjin performance results are shown in Fig-
ures 16 (b25) and 15 (shootout). We only show benchmarks
that run; the other did not due to missing features. On ge-
ometric average over supported benchmarks, Renjin is 2.2x
slower than GNUR-AST on b25 and 1.8x on the shootouts.
The pr4 benchmark from b25 fills in a matrix of 500x500
elements in a loop. Semantically in R, any element update
of a matrix creates a new matrix. Renjin copies the matrix
in each iteration of the loop. GNUR-AST (and FastR) know
through dynamic alias analysis that the matrix is private and
avoid the copy, hence the 107x overhead of Renjin.

The 15x slowdown of Renjin on sn2 is because of redun-
dant computation of a view. sn2 pre-computes two matri-
ces (one using an outer product, another as the transpose of
the first) and uses them read-only in a loop for computation.
In Renjin, due to lazy computation, the matrices are not in
fact pre-computed. Instead, each element is repeatedly re-
computed on-the-fly. Renjin supports views that can cache
the computed result, but they are not used for these opera-
tions. We do not have a definitive advice for Renjin on this.
FastR implements profiling views to fight redundant compu-
tation, but they are based on a heuristic that does not work
in the sn2 benchmark — redundant computation is avoided
by coincidence (the particular computation of the initial ma-
trices in sn2 happens to be always eager in FastR). GNUR
does not run into these problems, because it always com-
putes eagerly.

The nearly 5x slowdowns of Renjin on bt benchmarks
(shootout) is due to the return statement (the benchmark is
dominated by calls to a cheap recursive function which uses
a return statement). In Renjin, every single call to return al-
locates a new Java exception and throws it. GNUR-AST, in-
stead, uses a C non-local jump, which is much cheaper. In

0.00

0.25

0.50

0.75

1.00
bt

1
bt

2
bt

3
pr

1
pr

2
fa

1
fa

2
fa

3
fa

4
fa

5 fr1 fr2 kn
1

kn
2

kn
3

kn
4

m
a1

m
a2

m
a3

m
a4 nb
1

nb
2

nb
3

nb
4

nb
5

pd
1

rd
1

rc
1

rc
2

rc
3

sn
1

sn
2

sn
3

sn
4

sn
5

sn
6

sn
7

R
el

at
ive

 E
xe

cu
tio

n
Ti

m
e

(G
N

U
R
−A

ST
 =

 1
)

FastR GNUR−BC

Relative Time of FastR and GNUR−BC over GNUR−AST

Figure 13. Shootout Relative Execution Times (lower is better). Geo. mean speedup for FastR is 8.5x and 1.8x for GNUR-BC.

0.00

0.25

0.50

0.75

1.00

m
c1

m
c2

m
c3

m
c4

m
c5 m
f1

m
f2

m
f3

m
f4

m
f5 pr
1

pr
2

pr
3

pr
4

pr
5

R
el

at
ive

 E
xe

cu
tio

n
Ti

m
e

(G
N

U
R
−A

ST
 =

 1
)

FastR GNUR−BC

Relative Time of FastR and GNUR−BC over GNUR−AST

Figure 14. Benchmark 2.5 Relative Execution Times (lower is better). Geo. mean speedup FastR is 1.7x and 1.1x for GNUR-BC.

FastR, we use a pre-allocated exception (the return value is
stored in the R Frame). Moreover, FastR’s return elision op-
timization avoids executing the return statement completely
in the bt benchmarks.

Fusion. Our implementation of fusion of view trees into
Java byte-code, on average, provides no performance change
on the b25 and the shootout benchmarks (numbers shown in
graphs are without fusion). Lacking a realistic application
that would stress vector computation, we use a trivial micro-
benchmark to validate the potential speed-up of fusion. We

0.0

2.5

5.0

7.5

10.0
bt

1

bt
2

bt
3

pr
1

pr
2

fa
1

fa
2

fa
3 fr1 nb
1

rc
1

rc
2

rc
3

sn
1

sn
2

sn
3

sn
6

sn
7

R
el

at
ive

 E
xe

cu
tio

n
Ti

m
e

(G
N

U
R
−A

ST
 =

 1
)

Relative Execution Time of Renjin over GNUR−AST

Figure 15. Shootout Relative Execution

Times: Renjin (lower is better). Y-axis cut
off at 10x slowdown (sn2 slowdown is 15x).
Geo mean slowdown is 1.8x.

0.0

2.5

5.0

7.5

10.0

m
c1

m
c2

m
c3

m
c4

m
c5 m
f5 pr
1

pr
2

pr
3

pr
4

pr
5

R
el

at
ive

 E
xe

cu
tio

n
Ti

m
e

(G
N

U
R
−A

ST
 =

 1
)

Relative Execution Time of Renjin over GNUR−AST

Figure 16. Benchmark 2.5 Relative Ex-

ecution Time: Renjin (lower is better). Y-
axis cut off at 10x slowdown (pr4 slow-
down is 107x). Geo. mean slowdown is
2.2x.

0

2

4

6

0 3000 6000 9000
Vector size [elements]

Ti
m

e
[s

]

baseline with fused materialize

FastR with fused materialize over baseline FastR

Figure 17. FastR Fusion. (smaller is bet-
ter). Fusion speeds up materialization on a
micro-benchmark as vector size increases.
Approx. 7x speedup.

measure the time to compute a sequence of commands x =

y + z * y + z - 2 * (8 + z); x[[1]] = 3 for primitive
vectors y and z of increasing size. Note the vector update of
x which triggers materialization of the full vector x. With fu-
sion enabled, the materialization will be performed using au-
tomatically fused and dynamically loaded byte-code for the
particular computation. We report average time to calculate
10,000 repetitions of the code sequence (Figure 17) for in-
creasing vector size. We exclude initial 30,000 iterations, fo-
cusing on peak performance of repeated computation rather
than fixed cost of fusing a view tree.

7. Conclusions

Many languages start with a straightforward AST interpreter.
As their popularity grows, the initial implementation usually
starts to feel slow. This paper shows that the battle is not
necessarily over. We have implemented a Java-based AST
interpreter for a subset of the R language which, on some
benchmarks, is 8.5x faster than a C AST interpreter and 4.9x
faster than a byte-code interpreter. The techniques we used
are all, individually, simple and require understanding of the
application domain rather than heroic compiler skills. These
techniques can be ported to a C interpreter and the ideas to
other languages.

Our implementation leveraged the Java runtime system in
a number of ways. We benefited from Java’s garbage collec-
tor, from its ability to generate and load code dynamically,
and from the productivity that comes with a type safe object-
oriented language. But, there is a price too. Integration with
the myriad of native functions used by GNU R is painful as
JNI is cumbersome and slow. The lack of complex numbers
and accompanying complex number arithmetics complicates
the implementation. Math functions implemented in Java are
often slow compared to their native equivalent.

Specialization worked well on our workloads, but one
should be careful about generalizing. On one hand, the prob-

lems we looked at are kernels that are simpler than real code.
On the other hand, they manipulate relatively small amounts
of data. Some of our speedups will be more pronounced with
large vectors. But this remains to be shown in practice. As
we increase coverage of the language we will be in a position
to better evaluate the true benefits of our optimizations.

Drawbacks of specialization are that it greatly increases
code size of the interpreter and result in a non-linear body of
code. We found we were writing boiler plate code for multi-
ple variants of a node, yet it was not sufficiently repetitive, so
there was not a clear way to generate it automatically. Un-
derstanding control flow in the interpreter is made difficult
by the fact that classes are related by rewriting relationship.

Working at the AST level was convenient because tree
rewriting is easy to implement, but it is a less efficient rep-
resentation than bytecode and each node is optimized in iso-
lation, with no information from its context. An extension to
our work would be to look at how to perform similar changes
directly on the bytecode and combine them with some pro-
gram analysis. It is not clear if going to bytecode rewrit-
ing would raise the complexity bar too high for non-experts,
though. We plan to add parallelism to our implementation,
hence we will be forced to deal with concurrency.

Availability

FastR v0.168 is released under a GPL license and can be
downloaded from:

http://github.com/allr/fastr

Acknowledgments

The authors thank Leo Osvald, Brandon Hill and Gaël
Thomas for their help early in the project. Michael Haupt,
Helena Kotthaus, Luke Tierney and Duncan Temple Lang
provided us with feedback. We thank Tomas Würthinger,
Mario Wolczko and the Truffle team for the idea of using
code specialization. This work was supported in part by

grants from the NSF and the ONR, and by gifts from the
Oracle Corporation.

References

[1] P. S. Abrams. An APL machine. Ph.D. thesis, Stanford
University, 1970.

[2] R. A. Becker, J. M. Chambers, and A. R. Wilks. The
new S language: a programming environment for data
analysis and graphics. Wadsworth and Brooks/Cole
Advanced Books & Software, 1988.

[3] C. Chambers and D. Ungar. Making pure object ori-
ented languages practical. In Proceedings of Object-
Oriented Programming Systems, Languages and Appli-
cations (OOPSLA), 1991.

[4] S. Chirokoff, C. Consel, and R. Marlet. Combining
program and data specialization. Higher-Order and
Symbolic Computation, 12(4), 1999.

[5] D. Eddelbuettel and C. Sanderson. RcppArmadillo: ac-
celerating R with high-performance C++ linear algebra.
Computational Statistics & Data Analysis, 71, 2014.

[6] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin,
M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky,
J. Orendorff, J. Ruderman, E. W. Smith, R. Reitmaier,
M. Bebenita, M. Chang, and M. Franz. Trace-based
just-in-time type specialization for dynamic languages.
In Proceedings of Programming Language Design and
Implementation (PLDI), 2009. .

[7] I. Gouy. The computer language benchmarks
game6. http://benchmarksgame.alioth.debian.
org, 2013.

[8] R. Ihaka and R. Gentleman. R: A language for data
analysis and graphics. Journal of Computational and
Graphical Statistics, 5(3), 1996.

[9] D. McNamee, J. Walpole, C. Pu, C. Cowan, C. Krasic,
A. Goel, P. Wagle, C. Consel, G. Muller, and R. Mar-
let. Specialization tools and techniques for systematic
optimization of system software. ACM Transactions on
Computer Systems, 19(2), 2001.

[10] F. Morandat, B. Hill, L. Osvald, and J. Vitek. Eval-
uating the design of the R language. In Proceedings
of European Conference on Object-Oriented Program-
ming (ECOOP), 2012.

[11] L. Osvald. R shootout. http://r.cs.purdue.edu/

hg/r-shootout, 2012.
[12] R Development Core Team. R: A Language and

Environment for Statistical Computing. R Founda-
tion for Statistical Computing, 2008. http://www.

r-project.org.
[13] D. Smith. The R ecosystem. In R User Conference

(UseR), 2011.
[14] J. Talbot, Z. DeVito, and P. Hanrahan. Riposte: a

trace-driven compiler and parallel VM for vector code
in R. In Proceedings of Parallel Architectures and
Compilation Techniques (PACT), 2012.

6 This citation was corrected after publication of this paper.

[15] L. Tierney. A Byte Code Compiler for R. University of
Iowa, 2012. http://homepage.stat.uiowa.edu/

~

luke/R/compiler/compiler.pdf.
[16] S. Urbanek. R benchmark 2.5. http://r.research.

att.com/benchmarks, 2008.
[17] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Du-

boscq, C. Humer, G. Richards, D. Simon, and M. Wol-
czko. One VM to rule them all. In Proceedings of
Onward!, the ACM Symposium on New Ideas in Pro-
gramming and Reflections on Software, 2013.

